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Unitarity is a fundamental property of any theory required to ensure we work in a theoretically
consistent framework. In comparison with the quark sector, experimental tests of unitarity for the
3x3 neutrino mixing matrix are considerably weaker. It must be remembered that the vast majority
of our information on the neutrino mixing angles originates from νe and νµ disappearance experi-
ments, with the assumption of unitarity being invoked to constrain the remaining elements. New
physics can invalidate this assumption for the 3x3 subset and thus modify our precision measure-
ments. We perform a reanalysis to see how global knowledge is altered when one refits oscillation
results without assuming unitarity, and present 3σ ranges for allowed UPMNS elements consistent
with all observed phenomena. We calculate the bounds on the closure of the six neutrino unitarity
triangles, with the closure of the νeνµ triangle being constrained to be ≤ 0.03, while the remaining
triangles are significantly less constrained to be ≤ 0.1 - 0.2. Similarly for the row and column nor-
malization, we find their deviation from unity is constrained to be ≤ 0.2 - 0.4, for four out of six
such normalisations, while for the νµ and νe row normalisation the deviations are constrained to be
≤ 0.07, all at the 3σ CL. We emphasise that there is significant room for new low energy physics,
especially in the ντ sector which very few current experiments constrain directly.

With the knowledge of sin2 2θ13 now almost at the 5%
level, and interplay between the long baseline accelerator
νµ → νe appearance data [1, 2] and short baseline reactor
νe → νe disappearance [3–5] data, combined with prior
knowledge of θ23 from νµ → νµ disappearance data [6–8],
suggesting tentative global hints at δCP ≈ 3π/2, there is
much merit to statements that we are now in the preci-
sion measurement era of neutrino physics. Our knowl-
edge of the distinct Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) neutrino mixing matrix elements comes from
the plethora of successful experiments that have run since
the first strong evidence for neutrino oscillations, inter-
preted as νµ → ντ oscillations, was discovered by Super-
Kamiokande in 1998 [9]. However, one must always re-
member that our knowledge of the matrix elements is
predominately in the νe and νµ sectors, and comes pri-
marily from high statistics νe disappearance and νµ dis-
appearance experiments, with the concept of unitarity
being invoked to disseminate this information onto the
remaining elements. With more statistics, the long base-
line νµ → νe and νµ → νe appearance experiments such
as T2K [10] and NOνA [11] will aid in νµ sector precision
measurements.

Unitarity of a mixing matrix is a necessary condition
for a theoretically consistent description of the under-
lying physics, as non-unitarity directly corresponds to
a violation of probability in the calculated amplitudes.
In the neutrino sector unitarity can be directly veri-
fied by precise measurement of each of the mixing ele-
ments to confirm the unitarity condition: U†U = 1 =
UU†. In this there are 12 dependant conditions, six
of which we will refer to as normalisations (sum of the
squares of each row or column, e.g the νe normalisation
|Ue1|2 + |Ue2|2 + |Ue3|2 = 1) and six conditions that mea-
sure the degree with which each unitarity triangle closes
(e.g the νeνµ triangle: Ue1U

∗
µ1 + Ue2U

∗
µ2 + Ue3U

∗
µ3 = 0).

Currently, from direct measurements of the individual

elements only, the νe normalisation is the sole condition
that can be reasonably constrained without any further
assumptions as to the origin of the non-unitarity [12].

In the quark sector, the analogous situation involv-
ing the Cabibbo-Kobayashi-Maskawa (CKM) matrix has
been subject to intense verification as many distinct ex-
periments have access to probes of all of the VCKM el-
ements individually. Current data shows that the as-
sumption of unitarity for the 3x3 CKM matrix is valid in
the quark sector to a high precision, with the strongest
normalisation constraint being |Vud|2 + |Vus|2 + |Vub|2 =
0.9999 ± 0.0006 and the weakest still being significant
at |Vub|2 + |Vcb|2 + |Vtb|2 = 1.044± 0.06 [13]. Unlike the
quark sector, however, experimental tests of unitarity are
considerably weaker in the 3x3 UPMNS neutrino mixing
matrix. It remains an initial theoretical assumption in-
herent in many analyses [14–16], but is the basis for the
validity of the 3ν paradigm.

This non-unitarity can arise naturally in a large va-
riety of theories. A generic feature of many Beyond
the Standard Model scenarios is the inclusion of one
or more new massive fermionic singlets, uncharged un-
der the Standard Model (SM) gauge group, SU(3)C ×
SU(2)L×U(1)Y . If these new sterile states mix with the
SM neutrinos then the true mixing matrix is enlarged
from the 3x3 UPMNS matrix to a nxn matrix,

UExtended
PMNS =




U3x3
PMNS︷ ︸︸ ︷

Ue1 Ue2 Ue3 · · · Uen
Uµ1 Uµ2 Uµ3 · · · Uµn
Uτ1 Uτ2 Uτ3 · · · Uτn
...

...
...

. . .
...

Usn1 Usn2 Usn3 · · · Usnn




. (1)

These so-called sterile neutrinos have been a major
discussion point for both the theoretical and experimen-
tal communities for decades. If they have masses at or
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Experiment Measured quantity with unitarity Without unitarity Normalisation

Reactor SBL
(νe → νe)

4|Ue3|2
(
1− |Ue3|2

)
= sin2 2θ13 4|Ue3|2

(
Ue1|2 + |Ue2|2

) (
|Ue1|2 + |Ue2|2 + |Ue3|2

)2
Reactor LBL
(νe → νe)

4|Ue1|2|Ue2|2 = sin2 2θ12 cos4 θ13 4|Ue1|2|Ue2|2
(
|Ue1|2 + |Ue2|2 + |Ue3|2

)2
SNO (φCC/φNC
Ratio)

|Ue2|2 = cos2 θ13 sin2 θ12 |Ue2|2 |Ue2|2 + |Uµ2|2 + |Uτ2|2

SK/T2K/MINOS
(νµ → νµ)

4|Uµ3|2
(
1− |Uµ3|2

)
=

4 cos2 θ13 sin2 θ23
(
1− cos2 θ13 sin2 θ23

) 4|Uµ3|2
(
Uµ1|2 + |Uµ2|2

) (
|Uµ1|2 + |Uµ2|2 + |Uµ3|2

)2
T2K/MINOS
(νµ → νe)

4|Ue3|2|Uµ3|2 = sin2 2θ13 sin2 θ23 −4 Re{U∗
e3Uµ3 (U∗

e1Uµ1 + U∗
e2Uµ2)} |Ue1U∗

µ1 + Ue2U
∗
µ2 + Ue3U

∗
µ3|2

SK/OPERA
(νµ → ντ )

4|Uµ3|2|Uτ3|2 = sin2 2θ23 cos4 θ13 −4 Re{U∗
τ3Uµ3 (U∗

τ1Uµ1 + U∗
τ2Uµ2)} |Uµ1U∗

τ1 + Uµ2U
∗
τ2 + Uµ3U

∗
τ3|2

TABLE I: Example experiments and the leading order functions of UPMNS matrix elements they measure, in both the unitary
and non-unitary case. The third column shows the normalisation that can be bound if the experimental measurements of the
fluxes and backgrounds are known to a high enough degree.

near the GUT scale, then the see-saw mechanism can
provide sufficiently small masses to the SM neutrinos
[17], but a priori these new states can sit at practically
any mass as there is no known symmetry to dictate
a scale. Although this extended nxn mixing matrix,
should nature choose it, will indeed be unitary to
preserve probability, the same is not true for any given
mxm subset, with m < n. This is the canonical model
of how new physics, introduced at any scale, breaks
observed unitarity in the neutrino sector.

An extensive body of work in the literature exists
on non-unitarity in the neutrino sector, most of which
has been analysed with the rigorous model-independent
approach of the Minimal Unitarity Violation (MUV)
scheme [18]. In this approach the new physics enters
high above the energies involved in oscillation experi-
ments, and the three neutrino Standard Model becomes a
low-energy effective theory in which the unitarity of the
3x3 mixing matrix is not assumed. It has been shown
recently [19] that the current status under this scheme
is highly constrained by experiment, the weakest unitar-
ity constraint is |Uτ1|2 + |Uτ2|2 + |Uτ3|2 = 0.9947 → 1.0
at the 90 % CL, producing practically immeasurable de-
viations to the mixing angles with current experimen-
tal uncertainty. Some of the most stringent bounds in
the MUV scheme come from rare lepton decays such as
µ→ eγ. This is due to the fact that without the unitar-
ity condition in the 3x3 mixing matrix, the exact (in the
massless ν limit) cancellation provided by the Glashow-
Iliopoulos-Maiani mechanism [20] in the SM no longer
holds. In conjunction with the fact each pair of active
neutrinos and charged leptons, e.g. (νe, eL), make up
SU(2)L electroweak doublets, this results in the off di-

agonal terms of U†PMNSUPMNS being hugely constrained
by the current experimental limits on the branching ra-

tio BR(µ → eγ). The strongest limits currently arise
from the MEG experiment, BR(µ → eγ) < 5.7 × 10−13

at the 90% CL [21] which translates to a bound on
|U∗e1Uµ1 +U∗e2Uµ2 +U∗e3Uµ3| < 10−5 [19] at the 90% CL.

If, however, the new physics that provides the non-
unitarity enters at a much lower energy scale, as sev-
eral current experimental hints suggest with anomalous
results from LSND [22], MiniBooNE [23], the Gallium
anomaly [24, 25] and the Reactor anomaly [26], then
many of the most constraining experiments that bound
the MUV scheme are not directly applicable. For physics
entering at these lower scales, one must focus on direct
measurements of the individual mixing elements. To this
end neutrino oscillations are the most important exper-
imental probe we have access to. The most convincing
means of verification of unitarity in the neutrino sector
would be analogous to the quark sector, via direct and
independent measurement of all the UPMNS elements,
to overconstrain the parameter space and confirm that
the 12 unitarity constraints hold to within experimen-
tal precision. However, we do not currently have access
to enough experiments, at distinct mass differences, in
the νµ and ντ sectors to bound all of the elements to a
sufficient degree to verify all 12 conditions.

The situation for progress in direct measurement is
therefore not promising. Thus we must look for alter-
native ways to constrain the UPMNS elements. One can
perform indirect searches of unitarity by searching for
mixing elements outside those of the 3ν mixing regime.
These class of searches do not measure the 3x3 mixing
elements per say, but rather by looking for additional
states one can constrain the violations they would in-
duce in the 3x3 subset. One proceeds by noting all null
results in oscillations at mass differences distinct to those
of the 3ν paradigm. We do not wish to perform a global
fit for new physics as this has been well covered in the
literature [27, 28], instead we focus on what unresolved
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physics can do to our current precision, hence we do
not include any positive signals such as LSND or the
MiniBooNE anomaly. Such an sterile driven approach
requires additional assumptions on the exact origin of
the non-unitarity, thus losing some model-independence.
However, as an extended UPMNS matrix encompasses
many beyond the Standard Model scenarios, it is natural
to include this in our analysis. To proceed one must then
consider what scale the new physics enters at, however,
as we do not focus on the origin of such non-unitarity we
choose to marginalise over the new scale(s) assuming the
possibility they enter in at an oscillating scale, with at
least |∆m2| ≥ 10−2 eV2. Below this scale, states degen-
erate with SM neutrinos requires a much more detailed
analysis.

A non-unitary mixing matrix can be parameterised as
a 3x3 matrix hosting 9 complex non-unitary elements, 5
phases of which can be removed by rephasing the lepton
fields, leaving 13 parameters: 9 real positive numbers and
4 phases. The oscillation probability for a neutrino (anti-
neutrino) of initial flavour α and energy Eν to transition
to a neutrino (anti-neutrino) of flavour β after a distance
L with such a non-unitary mixing matrix is given by

P
(

(–)

να →
(–)

νβ

)
=

∣∣∣∣∣
∑

i=1

U∗βiUαi

∣∣∣∣∣

2

(2)

− 4
∑

i<j

Re(UβiU
∗
βjUαiU

∗
αj) sin2

(
∆m2

ji

L

4Eν

)

(—)

+ 2
∑

i<j

Im(UβiU
∗
βjUαiU

∗
αj) sin

(
∆m2

ji

L

2Eν

)
,

where now, without assuming unitarity, the leading
term is not a function of ∆m2L/Eν and is also not nec-
essarily equal to 1 or 0 in neutrino disappearance and
appearance experiments respectively. The leading term
directly probes three row normalisations in disappear-
ance experiments and three row unitarity triangles in
appearance. Table (I) shows some of the current most
constraining experiments and the associated mixing ma-
trix elements that they can directly measure. Although
violations of unitarity such as these modify the oscilla-
tion amplitudes and total normalisation of the probabil-
ity, they do not have any effect of the oscillation fre-
quency which remains a function of the mass differences
and L/Eν only (ignoring higher order non-unitary mat-
ter effects). Thus, for simplicity of analysis the global
best fit values for the mass squared differences are as-
sumed (∆m2

21 = 7.6×10−5eV2, |∆m2
31| = 2.4×10−3eV2)

[13]. For each observed oscillation one can then directly
compare the measured amplitude with the non-unitary
expression in equation (2). It is this amplitude-matching
that we use to undertake a global-fit and provides us
the ranges for UPMNS that would successfully reproduce
the measured oscillation amplitudes and normalisations.
We focus on the physically motivated subclass of unitar-
ity violations such that |Uα1|2 + |Uα2|2 + |Uα3|2 ≤ 1,
for α = e, µ, τ , and |Uei|2 + |Uµi|2 + |Uτi|2 ≤ 1 for

i = 1, 2, 3. Added assumptions on the exact origin of the
non-unitarity in the 3x3 submatrix can lead to further
correlations between the elements. In particular, if the
non-unitarity does indeed come from an enlarged mixing
matrix then one must invoke Cauchy-Schwartz inequali-
ties along with the unitarity constraints of the true ex-
tended mixing matrix to place six geometric constraints
on the mixing elements [18],

∣∣∣∣∣
3∑

i=1

UαiUβi
∗

∣∣∣∣∣

2

≤
(

1−
3∑

i=1

|Uαi|2
)(

1−
3∑

i=1

|Uβi|2
)
,

for α, β = (e, µ, τ), α 6= β,
∣∣∣∣∣
τ∑

α=e

UαiUαj
∗

∣∣∣∣∣

2

≤
(

1−
τ∑

α=e

|Uαi|2
)(

1−
τ∑

α=e

|Uαj |2
)
,

for i, j = (1, 2, 3), i 6= j. (3)

These geometric constraints enable precision measure-
ments in a single sector to be passed subsequently to
all elements of the mixing matrix1.

To perform the analysis, for each experiment consid-
ered2 we take the observed amplitude of the να → νβ (or
να → νβ) oscillation after normalisation, Aα;β , along-
side its published error σα;β and construct a χ2 =
(PNUα;β − Aα;β)2/σ2

α:β for the associated non-unitary am-

plitudes as taken from equation (2), PNUα;β , along with
any necessary normalisation systematics as pull factors.
For indirect short-baseline (SBL) and sterile searches, if
an experiment publishes the resultant χ2 surface of their
analyses in a 3+N format then this is used as a prior
to bound any non-unitarity. Otherwise an appropriate
prior is estimated by performing a 3+N fit to published
data, with sterile masses allowing for the possibility of a
sterile too light to oscillate yet or so heavy its oscillations
have become averaged out and up to three steriles within
the active oscillation region where spectral distortions are
evident, to approximate a 3+N CP violating scenario.

We minimize the constructed χ2 over all parame-
ters, satisfying the Cauchy-Schwartz constraints given
by equations (3), using an adaptive MCMC minimizer.
The results of the analyses are shown in Fig. (1), with-
out unitarity (red solid line) and with the assumption of
unitarity (black dashed line). The non-unitary analysis
was performed under the strict assumption that any non-
unitarity comes solely from an extended UPMNS and that

1 These Cauchy-Schwartz inequalities are analogous to the state-
ment that one can bound νµ → νe appearance by the associated
νµ and νe neutrino disappearance limits, in 3+N sterile neutrino
scenarios.

2 The experimental data considered in this analysis is: Bugey [29],
CCFR [30–33], CDHS [34], CHORUS [35], CHOOZ [36], Daya
Bay [37, 38], Double Chooz [5], ICARUS [39], KARMEN [40],
KamLAND [41, 42], MINOS [2, 7, 43, 44], NOMAD [45, 46] ,
NOνA [47], NuTeV [48], OPERA [49, 50], RENO [4], SNO [51],
SciBooNE [52], Super-Kamiokande [6, 53–55], T2K [8, 10].
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FIG. 1: Marginalised 1-D ∆χ2 for each of the magnitudes of the 3x3 neutrino mixing matrix elements, without (red solid) and
with (black dashed) the assumption of unitarity, using all data. The x-axis is the magnitude of each individual matrix element,
and the y-axis is the associated ∆χ2 after marginalisation over all parameters other than the one in question. Also shown is
the fit in which no normalisation or sterile search data is used (blue dotted), to highlight their importance to the fit. The blue
and red curves coincide closely with the unitary case in |Ue2| and |Ue3|. This analysis was preformed for the normal hierarchy,
the inverse hierarchy providing the same qualitative result.

no new interactions, such as an additional U(1)′ which
can lead to strongly modified matter effects, are active
at oscillation energies.

Upon minimization the best fit points agree in both
unitary and non-unitary fits. To compare how the pre-
cision varies we consider the frequentist 3σ ranges of the
one-dimensional ∆χ2 projections without unitarity as-
sumed (with unitarity), where we marginalise over all
parameters except the one in question, we obtain

|U |
w/o Unitarity
(with Unitarity)

3σ =



0.76→ 0.85 0.50→ 0.60 0.13→ 0.16
(0.79→0.85) (0.50→0.59) (0.14→0.16)

0.21→ 0.54 0.42→ 0.70 0.61→ 0.79
(0.22→0.52) (0.43→0.70) (0.62→0.79)

0.18→ 0.58 0.38→ 0.72 0.40→ 0.78
(0.24→0.54) (0.47→0.72) (0.60→0.77)



. (4)

The ranges for the individual elements, assuming uni-
tarity (bracketed numbers in above expression), are in

good agreement with published results in contemporary
global fits such as ν-fit [14].

Also in Fig. (1), for the purpose of emphasising how
important normalisation and sterile searches are to the
precision of the 3x3 UPMNS elements, without the as-
sumption of unitarity, we performed an alternative, more
conservative fit, in which no normalisation or 3+N ster-
ile search data is included. This fit only highlights the
stark difference between the quark and neutrino sectors.
Whereas the quark sector can independently measure all
VCKM elements, some within 0.1% and all within 10%
[13], in the neutrino sector we only have access to pre-
cision knowledge of the νe row in a completely model-
independent manner. This is as expected, as the νe sec-
tor has access to high statistics experiments at both the
solar and atmospheric mass scale, as well as a third inde-
pendent experiment in the solar flux measurements, due
to the MSW effect. In the νµ sector, |Uµ3|2 is known
to be non-zero from νµ disappearance experiments but
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FIG. 2: 1-D ∆χ2 for deviation of both UPMNS row (solid) and
column (dashed) normalisations, fitted with all spectral and
normalisation data, when considering new physics that enters
above |∆m2| ≥ 10−2eV2.

as |Uµ1| and |Uµ2| only appear in the degenerate com-
bination |Uµ1|2 + |Uµ2|2, they cannot be distinguished
individually. This degeneracy is very weakly broken by
the νµ → νe appearance experiment T2K [1], and will be
improved upon taking of more data and with future high
statistics NOνA [11] results. The addition of this nor-
malisation and sterile data in the 3ν unitarity case does
not change anything in the fit. From here on we will
discuss only the main results, as calculated including all
normalisation and sterile search data.

The addition of this sterile search and normalisation
data improves the situation significantly. If we define
the shift in range of allowed values as the ratio of the
difference in 3σ ranges without and with unitarity, to
that derived with unitarity, the increase in parameter
space for |Uei|, i = 2, 3 and |Uµi|, i = 1, 2, 3 are all ≤
10% (4%, 8%, 8%, 7% and 4% respectively), with |Ue1|
taking the majority of the discrepancy in the νe sector,
with an increase of allowed range of 68%, primarily
due to the weaker bounds from KamLAND compared
to the SBL reactors, and that |Ue1|2 forms the bulk of
|Ue1|2 + |Ue2|2 + |Ue3|2. The entire ντ sector, however,
may contain substantial discrepancies from unitarity
with shifts in allowed regions of 37%, 46% and 104%
respectively. We have little or no current mechanisms
to directly measure any ντ elements and we have not
yet observed any oscillation amplitude peaks, even the
recent 5σ discovery of νµ → ντ at OPERA [49] only
sees the tail end of the 1st oscillation maximum and the
observation of 5 events on a background of 0.25 ± 0.05
is not significant spectrally and can be equally be fit by
a flat normalisation discrepancy. The precision we do
have is driven by the fact large deviations here cause
violations of unitarity too large in the νe and νµ sectors,
passed through by the geometric Cauchy-Schwartz

constraints.

We must stress that even if the 3σ ranges of the
UPMNS elements agree closely with the unitarity case,
this does not equate to the neutrino mixing matrix
being unitary. In the unitary case the correlations are
much stronger and choosing an exact value for any one
the mixing elements drastically reduces the uncertainty
on the remaining elements. To better understand the
level at which we know unitarity is conserved or not, we
plot the resultant ranges for the normalisation in Fig
(2). We see that the νe and νµ normalisation deviations
from unity are relatively well constrained (≤ 0.06 and
0.07 at 3σ CL respectively), primarily by reactor fluxes
and a combination of precision measurements of the rate
and spectra of upward going muon-like events observed
at Super-Kamiokande [53] and the multitude of long
and short baseline accelerator νµ → νµ disappearance
experiments. We note the νµ normalisation deviation
from unity is constrained slightly (≈ 1%) better than
the νe normalisation. This is due to the large theoretical
error, 5%, on total flux from reactors assumed [56]. The
remaining normalisation deviations from unity are all
constrained to be . 0.2 - 0.4 at 3σ CL.

For the case of the six neutrino unitarity triangles, we
present the allowed ranges for their closures in Fig. (3).
For the three row triangles the bounds originate from a
combination of the corresponding geometric constraints
along with appearance data in the respective channel.
The column triangles, however, are bound by the geomet-
ric constraints only, and as the column normalisations are
proportionally less known, so too are the column unitar-
ity triangles. Only one triangle does not contain a ντ
element, the νeνµ triangle, and hence it is the only tri-
angle in which it is excluded to be open by more than
0.03 at the 3σ CL, compared to between 0.1 - 0.2 at the
3σ CL for the remaining triangles. This hierarchical sit-
uation will not improve unless precise measurements can
be made in the ντ sector.

If one wishes to proceed with measurements of unitar-
ity, without the assumption of an extended UPMNS ma-
trix and its subsequent Cauchy-Schwartz bounds, then
prospects for improvement are essentially limited to mea-
suring the νe normalisation. Improvement of all νe ele-
ments is possible, especially if the new generation reac-
tor experiments, JUNO [57] and RENO50 [58], proceed
as planned. See discussion by X. Qian et al. [12] for
a detailed discussion of the possible improvements. Sig-
nificant improvement in the νµ sector would require the
measurement of νµ disappearance at the solar mass scale,
well beyond what is currently technologically feasible.

Improvements in the indirect 3+N sterile measure-
ments are much more promising, the Fermilab Short
Baseline Neutrino (SBN) [59] program consisting of the
SBND, MicroBooNE and ICARUS experiments on the
Booster beam, will be capable of probing a wide range
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FIG. 3: 1-D ∆χ2 for the absolute value of the closure of the
three row (solid) and three column (dashed) unitarity tri-
angles, fitted with all spectral and normalisation data, when
considering new physics that enters above |∆m2| ≥ 10−2 eV2.
There is one unique unitarity triangle, the νeνµ triangle, in
that it does not contain any ντ elements and hence is con-
strained to be unitary at a level half an order of magnitude
better than the others. By comparison to Fig. 2 one can
clearly see the Cauchy-Schwartz constraints are satisfied.

of parameter space for 3+N models, increasing both the
appearance and disappearance bounds. Subsequently,
the long baseline program DUNE [60] will also be
able to significantly extend the constrained region of
νµ → νe appearance to lower mass differences, leading
to increased constraints on the νeνµ unitarity triangle
in this regime. An understanding of the neutrino flux
and cross sectional uncertainties are crucial for unitarity
measurements. Possible future experiments such as
a fully fledged Neutrino Factory [61] or the nuStorm
facility [62], with the uncertainty on their fluxes of the
order 1%, will be able to constrain the νµ normalisation
and νeνµ triangle far beyond what is currently obtain-
able. However, no one experiment can probe all scales
and complementarity is vital to definitively make a
statement about unitarity from new low-energy physics,
especially as there is little means to directly measure the
ντ sector. Improvement in ντ appearance requires new
experiments with both an intense, well known beam of
high enough energy νµ or νe to kinematically produce
charged taus, as well as a detector technology capable
of efficiently identifying them to a degree necessary

for precision high statistics measurements, both of
which are extremely difficult tasks. Perhaps crucially
for ντ measurements, Hyper-Kamiokande [63] will be
incredibly sensitive to atmospherically averaged steriles,
≥ 0.1 eV2, and will significantly improve the current
bounds on |Uτ1|2 + |Uτ2|2 + |Uτ3|2 in this regime, to
approximately 1− |Uτ1|2 + |Uτ2|2 + |Uτ3|2 ≤ 0.07 at the
99% CL [64], which would bring it closer inline with the
other sectors.

In this paper we have emphasised the fact that
current experimental bounds on unitarity within the 3ν
paradigm allows for considerable violation, and without
the unitarity assumption, the precision on the individual
UPMNS elements can vary significantly (up to 104% in
the case of |Uτ3|). However, we find no evidence for non-
unitarity. The prospects of directly measuring all the 12
unitarity constraints with high precision are poor, and
even when one allows for additional model-dependant
sterile searches we can only constrain the amount of
non-unitarity to be . 0.2 - 0.4, for four out of six of
the row and columns normalisations, with the νµ and νe
normalisation deviations from unity constrained to be ≤
0.07, all at the 3σ CL, see Fig. 2. Similarly, five out of
six of the unitarity triangles are only constrained to be
. 0.1 - 0.2, with opening of the remaining νeνµ triangle
being constrained to be ≤ 0.03, again at the 3σ CL, see
Fig. 3. One must be careful when assessing the current
experimental regime with the addition of new physics we
are currently insensitive to, as without the assumption of
unitarity there is much room for new effects, especially
in the ντ sector where currently significant information
comes from the unitarity assumption and not direct
measurements.
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